Peduncin, A New Indole Alkaloid from Pueraria peduncualris

Na LI¹, Qi Tai ZHENG², Zhi Da MIN¹*

¹Department of Natural Products Chemistry, China Pharmaceutical University, Nanjing 210009

²Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan street, Beijing 100050

Abstract: A new indole alkaloid, peduncin was isolated from the roots of *Pueraria peduncularis*. Its structure was established as **1** by NMR spectroscopic and X-ray crystallographic analysis.

Key words: Pueraria peduncularis, Leguminosae, alkaloid, peduncin.

Pueraria peduncularis (Grah. ex Benth.) Benth. is a plant of Leguminosae which grows in the southwest of China. Different from other plants of *Pueraria*, it could not be used as a medicine due to its toxicity¹. In order to use the *Pueraria* plants safer, we studied the constituents of *P. peduncularis*. Previous phytochemical studies of an *n*-BuOH extract afforded three triterpenoid saponins²⁻³. The continuing investigation on CHCl₃ extract led to the isolation of a new indole alkaloid. In this paper, we deal with the isolation and structural elucidation of this new compound.

Figure 1 The structure of peduncin.

Dried roots of *P. peduncularis* were extracted with 95% EtOH three times under reflux. The extract was condensed and dissolved in water, then partitioned successively with $CHCl_3$ and *n*-BuOH. The $CHCl_3$ extract was subjected to a silica gel column chromatography to yield **1**.

Peduncin **1** was obtained as colorless platelets, mp >300°C. Its HR-FABMS m/z 463.3110 agreed with a molecular formula of C₂₉H₃₇O₄N (calcd. for 463.3086). ¹H

Na LI et al.

NMR spectrum showed the presence of six quaternary methyl groups as singlets at d 1.51 (6H), 1.74 (6H), 1.81 (3H), 1.84 (3H) and a secondary methyl group at d 1.53 (d, 3H, J=6.9 Hz). Two isoprenyl groups, one 1,1-dimethylallyl group, one CHCH₂ fragment and one CH₃CH moiety could be elucidated by the combination of ¹H NMR, ¹H-¹H COSY, HMQC and HMBC spectra (**Table 1**). Besides these ¹H and ¹³C NMR spectral signals, there were three proton signals at d 8.04 (s, 1H), 7.13 (s, 1H) and 6.80 (s, 1H) in ¹H NMR spectrum and two carbonyl carbons at d 168.5, 167.8, six quaternary carbons at d 141.4, 133.9, 132.3, 129.0, 123.4, 104.1, two methenyl carbons at d 122.9, 115.1 in ¹³C NMR spectrum. It was very difficult to determine their linkages only by the HMBC spectrum, because there were too many quaternary carbons. In order to determine its structure, X-ray crystallography has been carried out.

Figure 2 Significant ¹³C-¹H long-range correlations observed in the HMBC spectrum of **1**.

X-ray analysis of peduncin: crystal data: $C_{29}H_{37}O_4N$, MW=463.62. Orthorhombic in the space group P2₁, with Z=2, a=12.422 (1), b=6.235 (1), c=18.207 (1) Å β =102.385 (3) and V=13773 (3) Å³. It calculated density Dc=1.118 g/cm³. Independent friedel (2448) were measured on MAC DIP-2030K image plate diffractometer with graphite-monchromated MoK α , radiation in *w*-scan mode. Friedal pairs (2416) were observed according to the criterion $|F|^2 \ge 8\sigma |F|^2$. The structure was resolved by direct method (SHELXS-86). The E-map gave the positions of 18 atoms. By using least-squares and Fourier difference methods, the positons of nonhydrogen atoms were established. The positions of all hydrogen atoms were determined by the geometric and Fourier difference methods, with R_f =0.083, R_w =0.073 $(w=1/\sigma^2 |F|)$, S =3.387, ($\ddot{A}\sigma$)_{max}=0.106, ($\ddot{A}\rho$)_{min} = -0.250e/Å³, ($\ddot{A}\rho$)_{max}=0.330e/Å³.

From the X-ray crystallographic study (**Figure 3**), the structure of **1** was confirmed as shown in **Figure 1**. The ¹H NMR and ¹³C NMR spectral data were assignable by a combination of 1D and 2D NMR techniques.

900

Figure 3 Stereoview of peduncin from X-ray diffraction analysis.

	d _C	$d_{\rm H} (J {\rm Hz})$	$^{1}\mathrm{H}\text{-}^{1}\mathrm{H}$	HMBC
1	Ν	8.04, s		C-2, C-3, C-8, C-9
2	141.4			
3	104.1			
4	115.1	7.13, s		C-3, C-6, C-9, C-26
5	133.9			
6	122.9	6.80, s		C-4, C-9, C-21, C-26
7	123.4			
8	129.0			
9	132.3			
10	29.5	3.66, dd (3.6, 14.7)	H-11	C-2, C-3, C-8, C-11
11	54.6	4.39, dd (11.5, 3.6)	H-10	C-12
12	168.5			
13	50.8	4.09, q (6.9)	H-15	C-14, C-15
14	167.8			
15	19.9	1.53, d (6.9)	H-13	C-13, C-14
16	39.0			
17	145.8	6.10, dd (17.2, 11.0)	H-18	C-16, C-19, C-20
18	112.3	5.16, d (17.2)	H-17	C-16, C-17
19	28.0	1.51, s		C-2, C-16, C-17, C-20
20	27.9	1.51, s		C-2, C-16, C-17, C-19
21	31.4	3.53, d (7.3)	H-22	C-6, C-22, C-23
22	122.9	5.42, t (7.3)	H-21	C-24, C-25
23	132.9			
24	17.9	1.84, s		C-22, C-23, C-25
25	25.8	1.81, s		C-22, C-23, C-24
26	34.6	3.39, d (7.2)	H-27	C-4, C-5, C-6, C-27, C-28
27	124.5	5.35, t (7.2)	H-26	
28	131.6			
29	25.7	1.74, s		C-27, C-28, C-30
30	17.9	1.74, s		C-27, C-28, C-29

Table 1¹H NMR and ¹³C NMR spectral data for 1*

_

* Measured in CDCl₃ at 400 MHz for ¹H and 100 MHz for ¹³C NMR

Na LI et al.

Acknowledgments

The authors thank the Department of Instrumental Analysis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union College for the measurement of X-ray crystallography and the Department of Instrumental Analysis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences for the measurements of NMR and MS spectra.

References

- Z. P. Gu, B. Z. Chen, R. Z. Feng, *et al.*, *Acta Pharm. Sin.*, **1996**, *31*, 387.
 N. Li, Y. L. Yang, Z. D. Min, H. M. Wu, *J. China Pharm. Univ.*, **1999**, *30* (3), 166.
- 3. N. Li, Z. D. Min, H. M. Wu, Chin. Chem. Lett. 2000, 11, 343.

Received 13 March, 2001